| Home | E-Submission | Sitemap | Editorial Office |  
top_img
J Korean Soc Laryngol Phoniatr Logop > Volume 5(1); 1994 > Article
Journal of The Korean Society of Laryngology, Phoniatrics and Logopedics 1994;5(1): 44-58.
우리말 모음의 발음시 음형대와 조음위치의 관계에 대한 연구
서경식, 김재영, 김영기
건국대학교 의과대학 민중병원 이비인후과학교실
Relationship between Formants and Constriction Areas of Vocal Tract in 9 Korean Standard Vowels
;;;
;;;
ABSTRACT
The formants of the 9 Korean standard vowels(which used by the average people of Seoul, central-area of the Korean peninsula) were measured by analysis with the linear predictive coding(LPC) and fast Fourier transform(FFT). The author already had reported the constriction area for the Korean standard vowels, and with the existing data, the distance from glottis to the constriction area in the vocal tract of each vowel was newly measured with videovelopharyngograms and lateral Rontgenograms of the vocal tract. We correlated the formant frequencies with the distance from glottis to the constriction area of the vocal tract. Also we tried to correlate the formant frequencies with the position of tongue in the vocal tract which is divided into 2 categories : The position of tongue in oral cavity by the distance from imaginary palatal line to the highest point of tongue and the position in pharyngeal cavity by the distance from back of tongue to posterior pharyngeal wall. This study was performed with 10 adults(male : 5, female : 5) who spoke primary 9 Korean standard vowels. We had already reported that the Korean vowel [i], [e], $[{varepsilon}]$ were articulated at hard palate level, [$dot{+}$], [u] were at soft palate level, [$wedge$] was at upper pharynx level and the [$wedge$], [$partial$], [a] in a previous article. Also we had noted that the significance of pharyngeal cavity in vowel articulation. From this study we have concluded that ; 1) The F$_1$ is related with the oral cavity articulated vowel [i, e, $varepsilon$, $dot{+}$, u]. 2) Within the oral cavity articulated vowel [i, e, $varepsilon$, $dot{+}$, u] and the upper pharynx articulated vowel [o], the F$_2$ is elevated when the diatance from glottis to the constriction area is longer. But within the lower pharynx articulated vowel [$partial$, $wedge$, a], the F$_2$ is elevated when the distance from glottis to the constriction area is shorter. 3) With the stronger tendency of back-vowel, the higher the elevation of the F$_1$ and F$_2$ frequencies. 4) The F$_3$ and F$_4$ showed no correaltion with the constriction area nor the position of tongue in the vocal tract 5) The parameter F$_2$- F$_1$, which is the difference between F$_2$ frequency and F$_1$ frequency showed an excellent indicator of differenciating the oral cavity articulated vowels from pharyngeal cavity articulated vowels. If the F$_2$-F$_1$ is less than about 600Hz which indicates the vowel is articulated in the pharyngeal cavity, and more than about 600Hz, which indicates that the vowel is articulated in the oral cavity.
Editorial Office
Journal of The Korean Society of Laryngology, Phoniatrics and Logopedics, Ewha Womans University, College of Medicine.
Anyangcheon-ro 1071, Yangcheon-gu, Seoul, Republic of Korea
TEL: +82-10-3008-3075   FAX: +82-2-2646-3076    E-mail: secretary@kslpl.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © Journal of The Korean Society of Laryngology, Phoniatrics and Logopedics.                 Developed in M2PI